Category Archives: Post Doc Poland

Mechanics on graded bundles

My joint paper with K. Grabowska and J. Grabowski entitled “Higher order mechanics on graded bundles” has now been accepted for publication in Journal of Physics A: Mathematical and Theoretical. The arXiv version is arXiv:1412.2719 [math-ph].

I am very happy about this as it is my first joint paper to be published. The paper presents some novel and interesting ideas on how to geometrically formulate higher order mechanics, hopefully our expected applications will be realised.

One interesting possible application, as pointed out by one of the referees, is computational anatomy; this is the quantitative analysis of variability of biological shape. There has been some applications of higher derivative mechanics via optimal control theory to this discipline [1].

We were not thinking of such applications in the biomedical sciences when writing this paper. For me, the main motivation for higher order mechanics is as a toy model for higher order field theories and these arise as effective field theories in various contexts. It is amazing that these ideas may find some use in ‘more down to Earth’ applications. However, we will have to wait and see just how the applications pan out.

You can read more about the preprint in an earlier blog entry.

References
[1] F. Gay-Balmaz, D. Holm, D.M. Meier, T.S. Ratiu & F. Vialard, Invariant higher-order variational problems, Comm. Math. Phys. 309(2), (2012), 413-458.

Two quotes on the philosophy of mathematics

I gave a talk the other day based on our recent work on graded bundles in the category of Lie groupoids. Anyway, as part of the motivation I drew the audiences attention to two quotes…

“Mathematics is written for mathematicians.” Copernicus

“For the things of this world cannot be made known without a knowledge of mathematics.” Roger Bacon

They show the two different sides of mathematics; mathematics motivated by mathematics and mathematics motivated by applications. I think one should to some extent sit in the middle here, but ultimately it is nice when mathematics has something to to with the real world, even if that connection is somewhat loose.

My real motivation for these two specific quotes was that Copernicus was Polish and Bacon English!

Weighted Lie groupoids

In collaboration with K. Grabowska and J. Grabowski, we have examined the finite versions of weighted algebroids which we christened ‘weighted Lie groupoids’.

Groupoids capture the notion of a symmetry that cannot be captured by groups alone. Very loosely, a groupoid is a group for which you cannot compose all the elements, a given element can only be composed with certain others. In a group you can compose everything.

Groups in the category of smooth manifolds are known as Lie groups and similarly groupoids in the category of smooth manifolds are Lie groupoids.

It is well-known every Lie groupoid can be ‘differentiated’ to obtain a Lie algebroid, in complete analogy with the Lie groups and Lie algebras. The ‘integration’ is a little more complicated and not all Lie algebroids can be globally integrated to a Lie groupoid. Recall that for Lie algebroids we can always integrate them to a Lie group.

Previously we defined the notion of a weighted Lie algebroids (and applied this to mechanics) as a Lie algebroid with a compatible grading. A little more technically we have Lie algebroids in the category of graded bundles. The question of what such things integrate to is addressed in our latest paper [1].

Lie groupoids in the category of graded bundles
The question we looked at was not quite the integration of weighted Lie algebroids as Lie algebroids, but rather what extra structure do the associated Lie groupoids inherit?

We show that a very natural definition of a weighted Lie groupoid follows as a Lie groupoid with a compatible homogeneity structure, that is a smooth action of the multiplicative monoid of reals. Via the work of Grabowski and Rotkiewicz [2] we know that any homogeneity structure leads to a N-gradation of the manifold in question; and so what they call a graded bundle.

The only question was what should this compatibility condition between the groupoid structure and the homogeneity structure be? It turns out that, rather naturally, that the condition is that the action of the homogeneity structure for a given real number be a morphism of Lie groupoids. Thus, we can think of a weighted Lie groupoid as a Lie groupoid in the category of graded bundles.

I will remark that weighted Lie groupoids are a nice higher order generalisation of VB-groupoids, which are Lie groupoids in the category of vector bundles. These objects have been the subject of recent papers exploring the Lie theory and application to the theory of Lie groupoid representations. I direct the interested reader to the references listed in the preprint for details.

Some further structures
Following our intuition here that weighted versions of our favourite geometric objects are just those objects with a compatible homogeneity structure in [1] we also studied weighted Poisson-Lie groupoids, weighted Lie bi-algebras and weighted Courant algebroids. The classical theory here seems to be pushed through to the weighted case with relative ease.

Contact and Jacobi groupoids
The notion of a weighted symplectic groupoid is clear: it is just a weighted Poisson groupoid with an invertible Poisson, thus symplectic, structure. By replacing the homogeneity structure, i.e. an action of the monoid of multiplicative reals, with a smooth action of its subgroup of real numbers without zero one obtains a principal $latex\mathbb{R}^{\times}$-bundle in the category of symplectic (in general Poisson) groupoids. Following the ideas of [3] this will give us the ‘proper’ definition of a contact (Jacobi) groupoid. We will shortly be presenting details of this, so watch this space.

References
[1] Andrew James Bruce, Katarzyna Grabowska, Janusz Grabowski, Graded bundles in the category of Lie groupoids, arXiv:1502.06092

[2] Janusz Grabowski and Mikołaj Rotkiewicz, Graded bundles and homogeneity structures, J. Geom. Phys. 62 (2012), no. 1, 21–36

[3] Janusz Grabowski, Graded contact manifolds and contact Courant algebroids, J. Geom. Phys. 68 (2013), 27–58.

Supersymmetry and mathematics

CERN Prof Beate Heinemann, from the Atlas experiment at CERN had said that they may detect supersymmetric particles as early as this summer. But what if they don’t?

What if nature does not realise supersymmetry? Has my interest in supermathematics been a waste of time?

Superysmmetry

We hope that we’re just now at this threshold that we’re finding another world, like antimatter for instance. We found antimatter in the beginning of the last century. Maybe we’ll find now supersymmetric matter

Prof Beate Heinemann [1]

In nature there are two families of particles. The bosons, like the photon and the fermions, like the electron. Bosons are ‘friendly’ particles and they are quite happy to share the same quantum state. Fermions are the complete opposite, they are more like hermits and just won’t share the same quantum state. In the standard model of particle physics the force carriers are bosons and matter particles are fermions. The example here is the photon which is related to the electromagnetic force. On the other side we have the quarks that make up the neutron & proton and the electron, all these are fermions and together they form atoms.

Supersymmetry is an amazing non-classical symmetry that relates bosons and fermions. That is there are situations for which bosons and fermions can be treated equally. Again note the very different ‘lifestyle’ of these two families. If supersymmetry is realised in nature then every boson will have a fermionic partner and vice versa. In one swoop the known fundamental particles of nature are (at least) doubled! Moreover, the distinction between matter and forces becomes blurred!

A little mathematics
Without details, the theory of bosons requires the so called Canonical Commutation Relation or CCR. Basically it is given by

\([\hat{x},\hat{p}] = \hat{x} \hat{p} – \hat{p} \hat{x} = i \hbar \).

Here x ‘hat’ is interpreted as the position operator and p ‘hat’ the momentum. The right hand side of this equation is a physical constant called Planck’s constant (multiplied by the complex unit, but this is inessential). The above equation really is the basis of all quantum mechanics.

The classical limit is understood as setting the right hand side to zero. Doing so we ‘remove the hat’ and get

\(xp- px =0 \).

Thus, the classical theory of bosons does not require anything beyond (maybe complex) numbers. Importantly, the order of the multiplication does not matter here at all, just think of standard multiplication of real numbers.

The situation for fermions is a little more interesting. Here we have the so called Canonical Anticommutation Relations or CAR,

\(\{\hat{\psi}, \hat{\pi} \} = \hat{\psi} \hat{\pi} + \hat{\pi} \hat{\psi} = i \hbar\).

Again these operators have an interpretation as position and momentum, in a more generalised setting. Note the difference in the sign here, this is vital. Again we can take a classical limit resulting in

\(\psi \pi + \pi \psi =0\).

But hang on. This means that we cannot interpret this classical limit in terms of standard numbers. Well, unless we just set everything to zero. Really we have taken a quasi-classical limit and realise that the description of fermions in this limit require us to consider ‘numbers’ that anticommute; that is ab = -ba. Note this means that aa= -aa =0. Thus we have nilpotent ‘numbers’, that is non-zero ‘numbers’ that square to zero. This is odd indeed.

Supermathematics and supergeometry
In short, supermathematics is all about the algebra, calculus and geometry one can do when including these anticommuting ‘numbers’. The history of such things can be traced back to Grassmann in 1844, pre-dating the applications in physics. Grassmann’s interests were in linear algebra. These odd ‘numbers’ (really the generators of) are usually referred to as Grassmann variables and the algebra they form a Grassmann algebra.

One of my interests is in doing geometry with such odd variables, this is well established and a respectable area of research, if not very well represented. Loosely, think about simple coordinate geometry in high school, but now we include these odd numbers in our description. I will only reference the original paper here [2], noting that many other works evolved from this including some very readable books.

What if no supersymmetry in nature?
This would not mean the end of research into supermathematics and its applications in both physics & mathematics.

From a physics perspective supersymmetry is a powerful symmetry that can vastly simplify many calculations. There is an industry here that works on using supersymmertic results and applying them to the non-supersymmetric case. This I cannot see simply ending if supersymmetry is not realised in nature, it could be viewed as a powerful mathematical trick. In fact, similar tricks are already mainstream in physics in the context of quantising classical gauge theories, like the Yang-Mills theory that describes the strong force. These methods come under the title of BRST-BV (after the guys who first discovered it). Maybe I can say more about this another time.

From a mathematics point of view supergeometry pushes what we know as geometry. It gives us a workable stepping stone into the world of noncommutative geometry, which is a whole collections of works devoted to understanding general (usually associative) algebras as the algebra of functions on ‘generalised spaces’. The motivation here also comes from physics by applying quantum theory to space-time and gravity.

Supergeometry has also shed light on classical constructions. For example, the theory of differential forms can be cast neatly in the framework of supermanifolds. Related to this are Lie algebroids and their generalisations, all of which are neatly described in terms of supergeometry [3].

A very famous result here is Witten’s 1982 proof of the Morse inequalities using supersymmetric quantum mechanics [4]. This result started the interest in applying physics to questions in topology, which is now a very popular topic.

In conclusion
Supermathematics has proved to be a useful concept in mathematics with applications in physics beyond just ‘supersymmetry’. The geometry here pushes our classical understanding, provides insight and answers to questions that would not be so readily available in the purely classical setting. Supergeometry, although initially motivated by supersymmetry goes much further than just supersymmetric theories and this is independent of CERN showing us supersymmetry in nature or not.

References
[1] Jonathan Amos, Collider hopes for a ‘super’ restart, BBC NEWS.

[2] F. A. Berezin and D. A. Leites, Supermanifolds, Soviet Math. Dokl. 6 (1976), 1218-1222.

[3] A Yu Vaintrob, Lie algebroids and homological vector fields, 1997 Russ. Math. Surv. 52 428.

[4] Edward Witten, Supersymmetry and Morse theory, J. Differential Geom. Volume 17, Number 4 (1982), 661-692.

Higher order mechanics on graded bundles

In collaboration with K. Grabowska and J. Grabowski, we have applied the recently discovered notion of a weighted algebroid to mechanics on graded bundles[1].

In our preprint “Higher order mechanics on graded bundles” We present the corresponding Tulczyjew triple for this situation and derive the phase equations from an arbitrary (maybe singular) Lagrangian or Hamiltonian, as well as the Euler-Lagrange equations. This is all done essentially in the first order set-up of mechanics on a Lie algebroid subject to vakonomic constraints. The amazing this is that the underlying graded bundle structure gives this whole picture the flavour of higher derivative mechanics. Within this framework we recover classical higher order mechanics, but we can study some more exotic situations.

For example, we geometrically derive the (reduced) higher order Euler-Lagrange equations for invariant higher order Lagrangians on Lie groupoids. To our knowledge, not much work has been done in understanding such systems [2,3]. We hope that the example on Lie groupoids turns out to be useful, maybe in say control theory.

References
[1] A.J. Bruce, K. Grabowska & J. Grabowski, Linear duals of graded bundles and higher analogues of (Lie) algebroids, arXiv:1409.0439 [math-ph], (2014).

[2] L. Colombo & D.M. de Diego, Lagrangian submanifolds generating second-order Lagrangian mechanics on Lie algebroids, XV winter meeting of geometry, mechanics and control, Universidad de Zaragoza, (2013). http://andres.unizar.es/ ei/2013/Contribuciones/LeoColombo.pdf

[3] M. Jozwikowski & M. Rotkiewicz, Prototypes of higher algebroids with applications to variational calculus, arXiv:1306.3379v2 [math.DG] (2014).

Talk for Polish physics students

On Friday 7th November I will be giving a short talk to physics students entitled ‘Fermions in Physics: from anticommuting variables to supermanifolds’, as part of the Ogólnopolska Sesja Kół Naukowych Fizyków.

This translates as ‘Scientific Session of the Nationwide Circle of Physicists’. This year the session is in the Tricity area.

I hope to tell them a little about the passage from the canonical anticommutation relations to Grassmann algebras and then supermanifolds. I have 45mins to get them interested in this geometric side of mathematical physics.

I will post the slides here after the event, but they may not make much sense without me telling this you this story.

Polish foods you must try

Here is my list of Polish food that I have enjoyed in Warsaw. In no particular order

Kashanka

blood

Polish blood sausage made with pig’s blood and buckwheat. It is like a cross between a haggis and a black pudding. It can be boiled, grilled or fried. Very delicious, I had one from a BBQ recently.

Biała kiełbasa

sausage

The domestic or common white sausage. To be found in every food shop in Poland. Best grilled or fired. The meat filling is more coarse than the typical British banger and contains cubes of fat. May not be the best for your waist, but you will enjoy it.

Ogórek kiszony/kwaszony

ogorek

There are (at least) two kinds of dill pickles in Poland. Ogórek kiszony are pickles preserved in wooden barrels. They are a little salty and the taste can change as they mature. I like the mature ones that have started to lose their colour. Very very popular in Poland.

The second kind ogórek konserwowy is preserved in vinegar. Also very good and nothing like the British gherkins that are far too sour.

Kapusta

cabbage

The word mean cabbage, though it commonly will refer to the Polish version of sauerkraut. It has a distinctive sour taste and does very well with any of the above. Generally I would say that it is more palatable that the German versions and that you should seek it out in the Polish section of the supermarket.

Sznycel (Kotlet Mielony)

meat

This is a flattened cutlet of port that is breaded and then fried. Very delicious and goes great with fries for lunch. They do a great sznycel in a restaurant near my flat.

Kaczka Pieczona z Jabłkami

duck

Roast duck with apples, it can also be served with a beetroot mash and a red berry sauce. This is my wife’s favourite. You really have to try this in a restaurant in Warsaw, I insist.

Befsztyk tatarski

beef

Polish style stake tartare, not to everyone’s taste, but here in Warsaw it is popular. It should be served with finely chopped ogórek, chopped preserved mushrooms and onions. Often it will also come with a small piece of fish to mix in and a drop of olive oil. I also like to add a little Maggi seasoning sauce to mine. I recommend it and you can buy packs of the tartare in the supermarkets in Poland to enjoy at home. That said, it is great for a starter in the restaurants here.

Bigos

bigos

Polish hunter’s stew, made with kapusta, various cuts of meat and sausages, mushrooms and dried plums. Very good and should be eaten if you get the chance. However, avoid the ready made versions in jars that you can find today. It is best eaten in a small restaurant in Warsaw.

That is just a flavour of the great food you can get in Poland. Maybe I should look at Polish deserts next week…

Weighted algebroids: theory and outlook for applications

I will be giving a talk at the “Seminarium Geometryczne” here in Warsaw on the first of October. The talk will be based my the recent work (arXiv:1409.0439 [math-ph]) with J. Grabowski and K. Grabowska.

Abstract
In this talk I will outline the theory of the recently discovered weighted Lie algebroids, which should be considered as a higher version of a Lie algebroid. We will then suggest how such structures can be employed in higher order Lagrangian mechanics. This is joint work with K. Grabowska and J. Grabowski.

Anyone who is interested is welcome to come along.

Link
Metody Geometryczne Fizyki

Linearisation & linear duals of graded bundles and weighted algebroids

I have now placed a preprint on the arXiv entitled “Linear duals of graded bundles and higher analogues of (Lie) algebroids” (arXiv:1409.0439 [math-ph],) which is joint work with J. Grabowski and K. Grabowska.

In this preprint (which we will shortly submit for publication) we develop some technology based on n-tuple graded bundles as first studied by Grabowski & Rotkiewicz, to define the notion of a linear dual of a graded bundle. As graded bundles are not simply vector bundles, they are polynomial bundles, the notion of a dual is not immediately obvious. We propose that the linear dual of a graded bundle be a particular reduction of the cotangent bundle of the said graded bundle. Related to the linear dual is the notion of the linearisation functor which takes a graded bundle and produces a double graded bundle for which the two side bundles are vector bundles. The linearisation can also be understood in terms of a particular reduction of the tangent bundle of the graded bundle.

From there we define the notion of a weighted skew/Lie algebroid, which is loosely a skew/Lie algebroid carrying some extra gradings. Interestingly, these objects are closely related to higher Lie algebroids as defined by Voronov in terms of a weight-one homological vector field on a non–negatively graded supermanifold and the \(\mathcal{VB}\)-algebroids as studied by Mackenzie, Gracia-Saz & Mehta and most recently by Brahic, Cabrera & Ortiz.

There are plenty of canonical examples of weighted algebroids including tangent bundles of graded bundles, the linearisation of higher order tangent bundles and in particular the reduction of higher order tangent bundles on Lie groupoids, again via linearisation.

For all the details and proper references consult the preprint.

This work is purely theoretical mathematics, though we are now looking towards applications in geometric mechanics. So watch this space…

Look who I bumped into in Warsaw!

Just thinking about some mathematical problems related to sigma models and string theory wandering round the new physics building in Warsaw…there are some nice views of the city from the 5th floor

warsaw window 1
View from the 5th floor

close up
Pałac Kultury i Nauki

Then just around the corner I met this man…

einstein

However, much like Banach, he was not very talkative… my regular coffee guy is a much better conversationalist and knows a thing or two about sigma models.