Physics and mathematics researchers in schools

The UK government is launching a new scheme to encourage those with a PhD in mathematics or physics to teach in high schools in England.

Under the scheme researchers would be paid £40,000 a year for conducting master classes for pupils in networks of schools, setting up free online maths and physics resources for schools to use, and teaching lessons that stretch more advanced students.

However, there is some concern that some of the researchers will not have all the skills needed to teach children, especially those that are struggling with the subjects.

I share some of this concern, however getting researchers involved in schools is a good thing. I don’t know the details here, but I would hope the terms are based on some kind of extended leave from your university.

Link
University researchers to teach pupils in government maths drive BBC News

The economic benefit of UK science

A report commissioned by The Campaign for Science and Engineering (CaSE) provides quantitative economic evidence that Government funding in science and engineering can boost growth in the economy.

The report states that for every £1 spent by the UK government on R&D, the private sector R&D output rises by 20p.

The report was written by Prof. J.Haskel of Imperial College Business School, and Prof. A. Hughes and E. Bascavusoglu-Moreau, both of the University of Cambridge.

Link
The Economic Significance of the UK Science Base

What to eat in space?

tim
Astronaut Tim Peake. Image by the UK Space Agency.

The UK Space Agency is today (2 May 2014) launching a competition for school children between the ages of 7 and 14 to design a British-inspired, balanced and exciting meal for British ESA astronaut Tim Peake to eat during his 6 month mission to the International Space Station (ISS).

https://www.gov.uk/government/news/the-great-british-space-dinner

I suggest a rocket salad for Tim’s launch!

Link
The Great British Space Dinner

Kew Gardens are in trouble.

Image by DAVID ILIFF The globally important conservation and science work conducted at the Royal Botanic Gardens, Kew is under threat due to government cut backs. The deficit is about £5M and will lead to loss of over 120 posts.

If you are worried about this you can sign the petition below aimed at Secretary of State for Environment, Food and Rural Affairs the Rt Hon Mr Owen Paterson MP;

Urgently reverse existing, proposed, and further cuts to RBG Kew’s annual operating grant in aid

Wales needs more engineers?

flag of wales According to the Royal Academy of Engineers Wales needs something like an extra 2,500 graduates by 2020 to cope with those leaving due to retirement.

Again, I just don’t know if this is really the case, given that we know that plenty of engineers are not finding suitable employment.

As soon as you look at the numbers, it is very hard to justify [claims of] a skills shortage

Marcus Body, head of research at Work Communications

Nearly a quarter of UK engineering graduates are working in non-graduate jobs or unskilled work such as waiting and shop work, a report suggests.

Katherine Sellgren (BBC) (2011)

I know I am starting to sound repetitive here, but what is really going on and how can we get to the truth? Do we really need more STEM graduates or not?

Link
Wales needs 2,500 engineers by 2020, professionals says BBC News Wales

What is a connection on a vector bundle?

I will assume the reader has some basic knowledge of differential geometry including the standard notions of a connection.

Connections on (or in) fibre bundles are confusing things when you first meet them. They maybe introduced as a way of defining parallel transport of objects along curves, for the tangent bundle you may have been introduced to them as directional derivatives and so on. A rather general notion is that put forward by Ehresmann as the compliment to the vertical bundle which we call the horizontal bundle. Note that Ehresmann’s defintion works for any fibre bundle and not just vector bundles. Even more abstractly we can define a connection on a fibred manifold as a section of its first jet bundle.

Okay, so we all agree that are confusing things. However, for vector bundles we can describe them completely geometrically as certain maps between double vector bundle. For double vector bundles see for example [1]

Double vector bundles
I won’t describe general double vector bundles here, all we really need is the tangent bundle of a vector bundle \(TE \), which we equip with natural local coordinates \((x^{A}, y^{a}, \dot{x}^{A}, \dot{y}^{a}) \). The coordinate transformations here are given by

\(x^{A’} = x^{A’}(x)\)
\(y^{a’} = y^{b}T_{b}^{\:\: a’}(x)\)
\(\dot{x}^{A’} = \dot{x}^{B}\frac{\partial x^{A’}}{\partial x^{B}}(x)\)
\(\dot{y}^{a’} = \dot{y}^{b}T_{b}^{\:\: a’}(x) + y^{b}\dot{x}^{B}\frac{\partial T_{b}^{\:\:a’}}{\partial x^{B}}(x)\)

It is now convenient to view this double vector bundle as a bi-graded manifold by assigning a bi-weight as \(w(x) = (0,0)\), \(w(y) = (1,0)\), \(w(\dot{x}) = (0,1)\) and \(w(\dot{y}) = (1,1)\).

Note that as a graded manifold the coordinate transformations must respect this bi-grading. A quick look at the transformation laws show that they do preserve this bi-grading. In fact, under some mild conditions, we can always view a double vector bundle as such a bi-graded manifold. This is far more convenient than the original definitions as a vector bundle in the category of vector bundles, where one has to check all the compatibility conditions.

We have the following vector bundle structures

DVD

The core of this double vector bundle is identified with \(ker(T\pi)\) which is the vertical bundle \(VE\), which you can easily see is isomorphic to \(E\).

As we have a bi-graded structure here we can also pass to a graded structure by considering the total weight. That is just sum the components of the bi-weight. In doing so we get what is know as a graded bundle of degree two [2]. In simpler language we have the series of fibrations

\(TE \rightarrow E \times_{M} TM \rightarrow M \),

defined by first projecting out \(\dot{y}\), which has weight 2 and the then projecting out \(y\) and \(\dot{x}\) which have weight 1. Again you can see that this is all consistent with the coordinate transformations.

Also note that \(E \times TM\) also carries the structure of a double vector bundle simply by projection onto the two factors and then the obvious projections to \(M\). This can be viewed keeping the bi-weight as inherited by that on \(TE \).

Connection in a vector bundle
Now let me define in a non-standard way a linear connection.

Def A (linear) connection on a vector bundle \(E\) is a morphisms of double vector bundles (bi-graded manifolds)

\(\Gamma: E \times_{M}TM \rightarrow TE\),

that acts as the identity on the vector bundles \(E\) and \(TM\).

So, does this reproduce the more standard definitions? Let us look at this in local coordinates;

\((x^{A}, y^{a}, \dot{x}^{A}, \dot{y}^{a})\circ \Gamma = (x^{A}, y^{a}, \dot{x}^{A}, \dot{x}^{A} y^{b} (\Gamma_{b}^{\:\: a})_{A}(x))\).

The question now is how do the components of the morphisms \((\Gamma_{b}^{\:\: a})_{A}\) transform under changes of local coordinates?

It is not hard to see that we have

\((\Gamma_{b’}^{\:\: a’})_{A’} = \frac{\partial x^{B}}{\partial x^{A’}}\left(T_{b’}^{\:\: c} (\Gamma_{c}^{\:\: d})_{B}T_{d}^{\:\: a’} + T_{b’}^{\:\: c} \frac{\partial T_{c}^{\:\: a’}}{\partial x^{B}} \right)\),

thus the local data of a linear connection as I defined it coincides exactly with the local data of the connection coefficients of connection on a vector as defined in any textbook on differential geometry.

Acknowledgements
I won’t claim originality here, this understanding was largely inspired by a lecture given by Prof. Urbanski.

References
[1] Kirill C. H. Mackenzie, “General Theory of Lie Groupoids and Lie Algebroids”, Cambridge University Press, 2005.

[2] J. Grabowski and M. Rotkiewicz, Graded bundles and homogeneity structures, J. Geom. Phys. 62 (2012), no. 1, 21-36.

The 2014 Abel Prize

The Norwegian Academy of Science and Letters has decided to award the Abel Prize for 2014 to Yakov G. Sinai of Princeton University and Landau Institute for Theoretical Physics, Russian Academy of Sciences for “his fundamental contributions to dynamical systems, ergodic theory, and mathematical physics”.

Sinai is best known for his works finding strong links between dynamical systems (deterministic) and stochastic systems (probabilistic).

Link
The Abel Prize website.

Random thoughts on mathematics, physics and more…