Explaining Oumuamua and Pioneer anomaly using Time relativity

I find that in theory the weird Speed Boost of the interstellar object ‘Oumuamua should be
0.217 mm/s above the prediction and that ‘Oumuamua should slow down less than prediction, in proportion of which the difference is 4.28×10-8 near the Sun. For Pioneer anomaly I have computed the gap between real and predicted acceleration and found the value 8.70×10-10 which is very close to the observation (8.74±1.33)×10−10 m/s2.

The mysterious interstellar object ‘Oumuamua confuses scientists because of its Speed Boost, which is an excess of velocity with respect to the expected one. In the past, the manmade Pioneer spacecrafts were also found to deviate from expected Newtonian trajectory.

One thinks the velocity of ‘Oumuamua is too high because it is faster than the expected velocity that the mass of the Sun allows. But if we have used a mass for the Sun slightly different from the real one, then the expected velocity would be not correct. So, let us see how the mass of the Sun is determined

Read the article below.

Relativistic kinematics and gravitation

Like in Newtonian kinematics, the relativistic change of reference frame must be a vector system of transformation laws for position, velocity and acceleration.

In special relativity, when changing the reference frame the coordinates of a moving point is transformed using Lorentz transformation. But the velocity-addition formula that transforms velocity is in a too different mathematical form than the Lorentz transformation. And for acceleration, there is not a transformation at all. The theory of Time relativity that I develop provides a coherent vector system of transformation laws for position, velocity and acceleration
Read the article below.