Examination of Cantor’s proofs for uncountability and axiom for counting infinite sets

An analysis of Cantor’s theory of uncountable sets: The logic of his proofs has some weaknesses. Cantor assumes for both his proofs that all real numbers (set R) are in a list (list L). Considering L as a set this assumption assumes R belongs to L. This makes the claim “a real number is constructed but is not in the list L” questionable. We propose a solution to this problem, an axiom for counting infinite sets and a solution to continuum hypothesis.

«Examination of Cantor’s proofs for uncountability and axiom for counting infinite sets»

https://www.academia.edu/86410224/Examination_of_Cantors_proofs_for_uncountability_and_axiom_for_counting_infinite_sets

Examination of Cantor’s proofs for uncountability and axiom for counting infinite sets

I do a detailed analysis of Cantor’s theory of uncountable sets. The logic of his proofs has some weaknesses. I propose an axiom and a solution to continuum hypothesis.

The main idea is:
Assumption of Cantor’s proofs: All real numbers (set R) are in a list (list L).

This assumption means R=L, considering L as a set. This makes the claim “a real number is created but is not in the list L” wrong. Indeed, if a number is outside L, it is outside R too. So, the statement “the created real number is not in the list L” means it is not in R and is not a real number, which is equivalent to claim that a real number is not real number. This is absurd but Cantor’s diagonal argument and nested intervals proof both claim that a real number is not in the list L and thus, is not a real number, which make them wrong.

On the other hand, Cantor’s both proofs search for contradiction. Can “this real number is not a real number” be the contradiction? No. The contradiction of the proofs is in the third step: sout “is not in the list”. By failing to create sout the second step collapses before the third step declares the contradiction.

See the paper
https://www.academia.edu/86410224/Examination_of_Cantors_proofs_for_uncountability_and_axiom_for_counting_infinite_sets