Blue, Blue, My Water is Blue

Water is blue … because water is blue

Actually, water is quite a transparent liquid, but not perfectly transparent. All substances to a certain degree absorb light, and as a consequence, the intensity of a beam of light spreading through matter drops exponentially with distance, as described by the so-called Beer-Lambert law. Pure water appears transparent because it takes a distance of the order of metres to reduce by half the intensity of light passing through it. And, what is most important for the apparent colour of water, the absorption depends on the wavelength of light, hence colour.

And, as it turns out, heavy water isn’t blue.

Magic Mirror

Making magnetic monopoles, and other exotica, in the lab

Physicist Shou-Cheng Zhang has proposed a way to physically realize the magnetic monopole. In a paper published online in the January 29 issue of Science Express, Zhang and post-doctoral collaborator Xiao-Liang Qi predict the existence of a real-world material that acts as a magic mirror, in which the never-before-observed monopole appears as the image of an ordinary electron. If his prediction is confirmed by experiments, this could mean the opening of condensed matter as a new venue for observing the exotica of high-energy physics.

Measuring Bilbo

How do you measure the properties of something that’s really hard to detect? It turns out that because of the wonderful usefulness of conservation laws, you can infer what you can’t easily see by finding as much as you can from what you can detect, and then figuring out what’s left over. Somewhat like detecting the invisible Bilbo Baggins by spotting his shadow. The original discovery of the neutrino, in fact, was due to the beta energy spectrum being continuous, which only makes sense if there is a third particle being emitted, and conservation of charge dictated that the neutrino be neutral.

Ultra-Cold Atoms and Neutrino Masses

The proposed experiment is to trap a large amount of tritium at very low temperatures (meaning that the atoms are very nearly stationary), and look at the recoil of the helium that’s produced. When the tritium decays into helium, one of two things happens: either the helium captures the electron on the way out, becoming neutral helium, in which case the atom recoils in a direction opposite the direction of the neutrino; or the electron and neutrino both escape, in which case the helium ion recoils in a direction that depends on the exit direction of both the electron and the neutrino. In either case, the helium is moving, and if everything is done right, it’s moving considerably faster than the trapped tritium atoms.

To measure the neutrino mass, then, all you need to do is detect the helium and measure both the magnitude and direction of its velocity. If the electron was captured, that alone is enough to let you find the momentum (and thus mass) of the neutrino; if the electron escaped, you need to determine its velocity as well, but again, you can calculate the momentum of the neutrino.

Unfortunately the link to the Physics World article doesn’t work work for me, since it’s subscription-only. Fortunately Chad also provides a link to the ArXiv proposal

This sounds very familiar to me, since measuring the recoil from beta decay is the experiment I worked on as postdoc at TRIUMF. The idea in that experiment (for a metastable K-38 atom decaying to Ar-38, both with zero-spin nuclei) is that the parent decays and the daughter is no longer held in the trap, so the escaping beta and daughter can be detected. If the beta and Ar have traveled in opposite directions, it means the neutrino must be either counter-propagating or co-propagating with the beta, since there has been no change in the spin of the nucleus; this has implications for the type of weak interaction that has taken place (scalar or vector, i.e. does the W-boson have any spin) but each case has a different implication for the amount of recoil the Ar atom will have, and this shows up in the time-of-flight. The standard model predicts that, in this case, the beta and the neutrino will be emitted in the same direction. Here’s a PRL and ArXiv for that experiment.

In one approach of the Tritium experiment they’re banking on the electron being captured, so you remove the three-body complication, and having a metastable helium recoil to detect (rather than neutral Helium, which is a lot harder), but adding the complication of photons to detect as the He decays into that metastable state. The other approach involves the three-body momentum, in which the emitted beta is not captured. This allows them to detect a Helium ion, which is much easier to do.

Then You Are Set With a Capital 'J'

When you’re a Jet,
You … stay … a … Jet!

Why Dropping a Stone Makes a Jet

The splash of a solid object into water–be it a coin or an Olympic high diver–is capped off by a thin jet of fluid shooting straight up from the surface. The detailed explanation of this seemingly simple event has proved elusive. Now researchers publishing in the 23 January Physical Review Letters think they have a more complete explanation than their predecessors. Using a combination of theory, simulation, and experiment, they studied the collapse of the air cavity trailing the submerged object, concluding that it ejects water like toothpaste squeezed rapidly from its tube.

Phys. Rev. Lett. 102, 034502
(issue of 23 January 2009)

I Get No Kick from Champagne

So tell me why should it be true?
That I get a kick out of you

gg writes up the recent paper on the Abraham-Minkowski controversy

Measuring the ‘kick’ of a photon leaving a fiber!

The difficulty lies in the fact that any discussion of the momentum of light in a medium must properly account for the total momentum of the system, which includes the momentum of the medium itself. When traveling into a medium of refractive index much greater than unity, the light is strongly interacting with the material and it becomes almost arbitrary to distinguish between the momentum of the photon and that of the matter: the two are completely intertwined. With this perspective, one would say that the designation of ‘light momentum’ and ‘medium momentum’ are completely arbitrary, merely different ways to slice ‘total momentum pie’. Differences in experimental results can be explained away as a failure to completely account for the interaction between the light and the medium.

New Quantum Teleportation Result

Via both Physics and Physicists and Uncertain Principles, I see that there is a new result in quantum teleportation between ions that were about a meter apart. Both posts have short summaries (along with Chad considering doing a more thorough write-up) and other links.

I think the Science Daily or Eureka Alert (which I think are identical) are the better ones, since they actually explain how the entanglement occurs:

You excite the two ions so they well drop back down into one of two complementary states, and in doing so they release photons that would be different in energy if they represent the two different transitions.

Before reaching the beamsplitter, each photon is in a superposition of states. After encountering the beamsplitter, four color combinations are possible: blue-blue, red-red, blue-red and red-blue. In nearly all of those variations, the photons cancel each other out on one side and both end up in the same detector on the other side. But there is one – and only one – combination in which both detectors will record a photon at exactly the same time.

In that case, however, it is physically impossible to tell which ion produced which photon because it cannot be known whether the photon arriving at a detector passed through the beamsplitter or was reflected by it.

Thanks to the peculiar laws of quantum mechanics, that inherent uncertainty projects the ions into an entangled state. That is, each ion is in a correlated superposition of the two possible qubit states

Are They Spherical?

Scientists make virtual cows to research methane emissions

“As the materials ferment you end up with what we call the poo jars. That is as technical as an engineer would want to get,” says Wood.

Methane gas emissions are monitored.

“Every time the little unit here flicks, we count the flicks for the amount of gas produced,” says Wood.

Surprisingly, the methane that cows release comes from an unexpected source.

“Cows don’t fart methane. 99% of the methane comes from their mouth.”

Moving in Stereo

Life’s the same, except for my shoes

Stereograms! Make Your Own 3D Camera for $15 or Less

If you happen to have two digital cameras, you can skip some of the steps, like getting the film developed and scanning the pictures. I was able to get my hands on a second camera; I found that butt-end joining got the lenses close together. I also tried side-by-side, using some optics posts and attaching to the camera tripod mounts. Unfortunately I did not have a third camera, so I can’t show the full rig.

Here is a laser table stereogram. I tested this on a few people, and not all could get it to work. But I can, and that’s good enough, for I am the benchmark for many things.

Tips for 3-D “cross-viewing”

Also, you can see that the two pictures appear to diverge from each other, an example of the leaning tower illusion

Deeper Than it Looks

My recent post on Haidinger’s brush reminded me of another optical phenomenon I have observed, and one that is a bit easier to see: the Pulfrich effect.

The Pulfrich effect is a phenomenon that gives the illusion of depth based on the response time of different light levels in the eye and how the brain interprets the delay. Lower light levels take longer to process, so if the image viewed by one eye is dimmer than the other, the signal from the dimmer view will lag in reaching your brain to be interpreted. With one eye darkened, something moving across your field of view will appear to get closer or further way.

When I first read about this, I consulted Wikipedia, which tells me

In the classic Pulfrich effect experiment a subject views a pendulum swinging in a plane perpendicular to the observer’s line of sight. When a neutral density filter (a darkened lens – typically gray) is placed in front of, say, the right eye the pendulum seems to take on an elliptical orbit, appearing closer as it swings toward the right and farther as it swings toward the left.

Well, gee, I work in an atomic physics lab. I can make a pendulum and have neutral density filters, so I went ahead an made up the experiment, using some scrap wire and a few optical-mount bases for the pendulum. And sure enough, with the right combination of filters (I think I ended up with ND=0.3 or 0.4) I was able to easily see the effect — the pendulum’s oscillation got closer at one end and further away at the other, and it reversed itself when I switched and darkened the other eye.

I wanted to show this off, so to make things a little easier I salvaged a damaged pair of sunglasses and popped one of the lenses shades out. (Not really lenses are they? OK, pedantic man says they are, albeit with an infinite focal length) That covers the eye better than the ND filter, which only has a 1″ diameter. I can use either the free eyepiece or the glasses. The biggest problem is getting people to look with both eyes — their natural tendency is to shut one eye and only look through the shade.