Looking for Energy Savings in All the Right Places

Regenerative brakes recapture energy that conventional brakes dissipate as heat. What’s next? Shock absorbers.

New Shock Absorber Harvests Energy From Bumps In The Road, Increases Fuel Economy

Their prototype shock absorbers use a hydraulic system that forces fluid through a turbine attached to a generator. The system is controlled by an active electronic system that optimizes the damping, providing a smoother ride than conventional shocks while generating electricity to recharge the batteries or operate electrical equipment.

In their testing so far, the students found that in a 6-shock heavy truck, each shock absorber could generate up to an average of 1 kW on a standard road — enough power to completely displace the large alternator load in heavy trucks and military vehicles, and in some cases even run accessory devices such as hybrid trailer refrigeration units.

Air = Gravity

Air equals gravity in movies (again)

No WAY. Air = gravity. No air = no gravity. How clearer could it be? This also happened in the movie Wall-E and I posted about it then. Basically, many people think that if there is no air there is no gravity. It sort of makes sense – if you are in space, there is no air and no gravity. Except that there IS gravity in orbit. And what about the moon? There is no air there, but clearly there is gravity.

Follow the Bouncing Atom

Bouncing atoms take a measure of gravity

Pretty cool. The experiment uses a technique used in interferometry, where a laser standing wave induces an absorption-emission cycle of an atom, so it receives a momentum “kick” of twice the photon momentum (one kick for absorption, and once for emission), effectively making a diffraction grating out of light if they were moving through the standing wave, and uses this to bounce the falling atoms.

If the colour of the laser light and the frequency of pulses are set correctly, the atoms will be set bouncing and the acceleration due to gravity can be deduced from the experimental parameters and Planck’s constant. The team managed to sustain this bouncing for about 100 cycles, which they say is the equivalent of dropping the atoms about 2 cm in a standard experiment.

ArXiv link

via

Come in Here, Dear Boy, Have a Cigar

By the way, which one’s Pink?

The Factual One ponders The physics of… Pink Floyd?

What’s more interesting is the fact that the refractive index is generally not a constant. Within the same material it can be different for different wavelengths. Usually – but not quite always – higher frequency light experiences a higher refractive index. It gets bent harder. It’s not obvious at the level of classes I teach why this should be so. Since the details aren’t really the key issue, the main thing to remember whether it’s high frequency or high wavelength that gets bent most strongly. It can be difficult to remember, until I remind the class about this:

[cue Dark Side of the Moon album cover]

More discussion at The Quantum Pontiff

Testing Einstein

We’re coming up on the golden anniversary of some very important experiments that were milestones in confirming relativity and were enabled by a breakthrough in nuclear physics, the Mossbauer effect. Mossbauer’s discovery (published in 1958) of the Mossbauer effect (what were the odds of that happening?) was that nuclei in a lattice had essentially no recoil when emitting gammas, since effectively they shared the mass of the entire sample. Normally, the conservation of momentum from the recoil of a nucleus shifted the gamma’s energy out of resonance, meaning that the gamma would not be reabsorbed by an identical nucleus; even though the recoil from the emission of a 100 keV gamma would only cause a shift of a few thousandths of a eV in the gamma’s energy, this is significantly larger than the width of the transition. However, effectively increasing the mass of the emitter by even a small fraction of Avogadro’s number — which you can do with just a speck of material — all but eliminates that energy shift, and the ground-state nucleus will absorb the photons emitted by the excited state.

This incredible new tool set the stage for several experiments in General and Special Relativity. One is the famous Pound-Rebka experiment that took place at the Jefferson Lab tower at Harvard. The premise of the experiment was that a photon climbing or falling in a potential well would be red- or blueshifted, and this could be compensated for by moving the source; when the Doppler shift canceled the gravitational effect, the photons would be on resonance and be absorbed by the target, but at other speeds would not be absorbed. This would cause a variation in the number of photons striking a detector. The gravitational redshift is small, \(gh/c^2 = 2.45 x10^-15 \) and the Doppler shift necessary to compensate is just \(7 x 10^-7 m/s\) . This sensitivity is doubled by reversing the experiment and looking for the blueshift of a falling photon. The source, Fe-57 (from a decay in Co-57) has a transition at 14.4 keV, and is narrow (about 10^-8 eV) owing to a ~100 ns lifetime.

The simplicity of the basic experiment masks some subtleties of device. The source and absorber needed to be specially prepared; the Co was diffused into a thin Fe sheet so that the source was in a very thin layer near the surface, and for the target a thin layer of Fe was electroplated onto a Be disc. These were vertically separated by 22.5 meters, and to reduce absorption by air, this space was taken by a mylar bag filled with Helium. The source was put on a transducer, i.e. a speaker cone, and oscillated at low frequency. To eliminate thermal effects, since the difference in thermal motion between the source and target materials could shift the nuclei out of resonance, they were stabilized to the same temperature.

The second order Doppler shift resulting from
lattice vibrations required that the temperature
difference between the source and absorber be
controlled or monitored. A difference of 1ºC
would produce a shift as large as that sought, so
the potential difference of a thermocouple with
one junction at the source and the other at the
main absorber was recorded. An identical system
was provided for the monitor channel.

The results agreed to about 10%, and a later experiment by Pound and Snider agreed to 1%

But it doesn’t end there. A lesser-know cousin to this experiment was carried out to observe the frequency shift in a rotating system. Once again using the Mossbauer spectroscopy of Fe-57, the source and target were mounted on the axle and rim of a cylinder, which was then rotated at some speed. In this case, one can look at the effect either by viewing this as a pseudo-gravitational potential or as a kinematic time dilation effect (both approaches, not surprisingly, yield the same answer), with the fractional frequency shift of \(v^2/2c^2 \) . The cylinder was rotated at different speeds and the increase in the counting rate was observed, as the target moved out of resonance with the source due to the frequency shift of the target.

Gravitational Red-Shift in Nuclear Resonance
Phys. Rev. Lett. 3, 439 – 441 (1959)
R. V. Pound and G. A. Rebka, Jr.
(Theory)

Apparent Weight of Photons
Phys. Rev. Lett. 4, 337 – 341 (1960)
R. V. Pound and G. A. Rebka, Jr.
(Experiment)

Measurement of the red shift in an accelerated system using the Mossbauer effect in Fe-57
Phys. Rev. Letters. 4, 165 (1960)
H. J. Hay, J. P. Schiffer, T. E. Cranshaw, and P. A. Egelstaff

Measurement of Relativistic Time Dilatation using the Mössbauer Effect
Nature 198, 1186 – 1187 (22 June 1963)
D. C. Champeney, G. R. Isaak and A. M. Khan

Anything but Boring

High Pressure Yields Novel Single-element Boron ‘Compound’

Scientists have found the first case of an ionic crystal consisting of just one chemical element – boron. This is the densest and hardest known phase of this element. The new phase turned out to be a key to understanding the phase diagram of boron – the only element for which the phase diagram was unknown since its discovery 200 years ago.

Pinch Me

Drippy Faucets Offer Lesson In Physics

To Peter Taborek, a drippy faucet is a physics experiment. Taborek uses high-speed video to capture the motion of drops and bubbles coming apart. Knowing the details of this “pinch-off” process is important when designing inkjet printers, because ink must form a single droplet without trailing liquid. It also is useful in biotechnology when fluid is used on microchips, and it has applications in cosmetics, food and structural materials industries.

The Relppod Effect

Doppler effect reversed by metamaterial

This latest research takes the principles of negative electromagnetic refraction and applies them to acoustic vibrations. Here the parameters to be made negative are material density and modulus, the latter relating to a material’s elasticity. Until now engineers have only created metamaterials with either of these properties, but Kim and colleagues have successfully combined them to create the world’s first “double-negative” acoustic metamaterial (arXiv:0901.2772v2 ). Their acoustic tube is constructed from thin membranes under tension fed by a carefully controlled air flow, and this manages to create a negative phase velocity for sound travelling through.